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The comparison of algorithms complexities is very important both in theory and in practice. 
When we compare algorithms complexities we need to compare complexity functions. Usually 
we use one-variable complexity functions. Sometimes, we need multivariable complexity func-
tions. In a previous paper we defined several one-variable complexity classes for multivaria-
ble complexity functions. Each complexity class of this type is a set of multivariable complexi-
ty functions, represented by a one-variable complexity function. In this paper we continue the 
work from that paper: we define new one-variable complexity classes and we prove several 
properties. The most important results are several criteria for two multivariable complexity 
functions to be comparable. 
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Introduction 
The complexity of an algorithm is usually 

expressed using complexity functions and 
complexity classes. A complexity function is 
a function defined on the set of positive in-
tegers and with values on the set of positive 
real numbers and it returns the quantity of 
computational resources necessary for an al-
gorithm to solve a problem for a given di-
mension of the inputs.  Using complexity 
functions give us an exact method to 
represent the complexity of an algorithm, but 
in many situations these functions have com-
plicated expressions and it is difficult to work 

with them.  
For this reason, computer scientists usually 
use complexity classes instead of complexity 
functions. Complexity classes are sets of 
complexity functions. They can be seen as 
equivalence classes with respect to the com-
plexity functions. For each complexity class 
we have a representative complexity func-
tion. This function is chosen to be the func-
tion with the simplest mathematical expres-
sion.  
Usually, we use only one-variable complexi-
ty functions and complexity classes, such as

 
))(()),(()),(()),(()),(( ngngongngOng ωΩΘ (1) 

 
The definitions for one-variable complexity 
classes can be found in almost any textbook 
related to the analysis of algorithms. See, for 
example, [1], [2], and [3]. 
When we compare algorithms we need to 
compare complexity functions. In [4] and [5] 
we obtained several results related to the 
comparison of two one-variable complexity 

functions using complexity classes. Our main 
results were several criteria for two one-
variable complexity functions to be compa-
rable.  
Sometimes we need to work with multivaria-
ble complexity functions. In [6], we defined 
five one-variable complexity classes for mul-
tivariable complexity functions: 

 
))(()),(()),(()),(()),(( ngngongngOng ωΩΘ  (2) 

 
The main idea was to use a one-variable 
complexity function as a representative func-

tion for each of these complexity classes, be-
cause there is easier to work with one-

1 
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variable functions. In addition, in [6] we gave 
some properties of these new defined classes. 
In this paper, we continue the work started in 
[6], proving for multivariable complexity 
functions and one-variable complexity 
classes several properties that we proved in 
[4] and [5] for one-variable complexity func-
tions and one-variable complexity classes. 
This paper also contains the results from [6]: 
Definition 1, Definition 2, Proposition 2 a), 
b), Proposition 3, Theorem 2, and Theorem 
3. We present here more detailed proofs for 
these two propositions and for Theorem 3.   
The paper is organized as follows. In section 
2, we remind the definitions for one-variable 
complexity classes for one-variable complex-
ity functions, we present the definitions from 

[6], and we present some new definitions re-
lated to one-variable complexity classes for 
multivariable complexity functions. In Sec-
tion 3 we prove some properties related to 
the complexity classes defined in Section 2. 
In Section 4, we present the main results of 
the paper. Section 5, contains the conclusion 
and some future work. 
 
2 Definitions 
We will denote by +N  the set of positive in-
tegers and by +R  the set of positive real 
numbers. Consider the function ++ → RNg :  
to be an arbitrary fixed complexity function.  
Consider the following complexity classes 
(see [2], [3]): 

 

}),()()(
,,|:{))((
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}),()(
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0

0
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NnRcRNfng
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(7) 

 
Definition 1  
Let be +∈Nk . Let be 

k
k Nxxxx )(),...,,( 21 +∈=  and 

k
k Nyyyy )(),...,,( 21 +∈= . We say that yx ≥  

if kiyx ii ..1, =∀≥ . 
 
Remark 1 
In the rest of the paper we will consider that 

the function )(ng is monotonically increasing 
on +N (i.e. +∈∀ Nyx,  such that yx ≤  we 
have ))()( ygxg ≤ . 
 
Definition 2 
Next, we define five one-variable complexity 
classes for multivariable complexity func-
tions:

 

)},...,,(),...,,(
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(8) 
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Definition 3 
Let ++ → RNf k)(:  be a complexity function. The function ),...,,( 21 knnnf is comparable with 
the function )(ng  if  
 

))(())(())(())(())((),...,,( 21 ngngongngOngnnnf k ω∪∪Ω∪∪Θ∈ (13) 
 
We denote by ))(( ngC  the set of all complexity functions comparable with )(ng . Conse-
quently,  
 

))(())(())(())(())(())(( ngngongngOngngC ω∪∪Ω∪∪Θ= (14) 
 
Definition 4 
We define the following one-variable complexity classes: 
 

)))(())(((\))(())(( ngngongOngo Θ∪=Θ   (15) 
)))(())(((\))(())(( ngngngng ωω ∪ΘΩ=Θ  (16) 

 
Definition 5 
Let be ++ → RNf k)(:1 , ++ → RNf k)(:2  two multivariable complexity functions. We say 
that the functions ),...,,( 211 knnnf  and ),...,,( 212 knnnf  are comparable if  
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or 
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3 Some properties of the complexity 
classes  
 
Proposition 1 
a) ))(())(( ngng Θ⊆Θ , ))(())(( ngOngO ⊆ , 

))(())(( ngng Ω⊆Ω  
b) ))(())(( ngongo ⊆ , ))(())(( ngng ωω ⊆  
Proof 
For each complexity class for multivariable 

functions, if we consider only the functions 
for 1=k  then we obtain the corresponding 
class for one-variable functions.  
Next, we show some details for obtaining the 
result for ))(( ngΘ : in the definition of the 
class ))(( ngΘ , we consider only the func-
tions for 1=k : 
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Consequently, we have 
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which are exactly the functions from the 
class ))(( ngΘ . It follows that 

))(())(( ngng Θ⊆Θ .  
For the other complexity classes the results 
can be obtained using the same idea. Conse-
quently, we have the following results:

))(())(( ngOngO ⊆ , ))(())(( ngng Ω⊆Ω , 
))(())(( ngongo ⊆ , ))(())(( ngng ωω ⊆ . 

 
Proposition 2 
a) Ø))(( ≠Θ ng , Ø))(( ≠ngO , Ø))(( ≠Ω ng  
b) Ø))(( ≠ngo , Ø))(( ≠ngω  
c) Ø))(( ≠Θ ngo , Ø))(( ≠Θ ngω  
 
Proof 
a), b) Using (3), (4), (5), (6), (7) one can 
prove that  
 

Ø))(( ≠Θ ng , Ø))(( ≠ngO , Ø))(( ≠Ω ng , 
Ø))(( ≠ngo , Ø))(( ≠ngω  (21) 

For example, ))(()( ngng Θ∈ , 
))(()( ngOng ∈ , ))(()( ngng Ω∈ , 

))((/)( ngonng ∈ , ))(()(* ngngn ω∈  (see 
[4]). 
Next, using Proposition 1, it follows that 

Ø))(( ≠Θ ng , Ø))(( ≠ngO , Ø))(( ≠Ω ng , 
Ø))(( ≠ngo , Ø))(( ≠ngω . 

c) Let be ++ → RNf k)(:1 , ++ → RNf k)(:2  

such that ))((),...,,( 211 ngonnnf k ∈  and 
))((),...,,( 212 ngnnnf k Θ∈ . Let be 1N  and 

2N  two infinite subsets of 
kN )( + , such that 

1N  and 2N  form a partition of 
kN )( + . Let 

be  
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Using (8), (9), and (11) one can prove that ))((),...,,( 21 ngOnnnf k ∈ , 
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))((),...,,( 21 ngnnnf k Θ∉ , and 
))((),...,,( 21 ngonnnf k ∉ . Consequently, we 

have the following result:
))((),...,,( 21 ngonnnf k Θ∈ .  It follows that 

Ø))(( ≠Θ ngo . 
For proving that Ø))(( ≠Θ ngω  we can use 
the same idea used for ))(( ngoΘ . 
Proposition 3 
a) ))(())(( ngOng ⊆Θ  

b) ))(())(( ngng Ω⊆Θ  
 
Proof 
a) In [4] we proved that ))((/)( ngonng ∈ . 
Since ))(())(( ngOngo ⊆ we have 

))(())((/)( ngOngOnng ⊆∈ . Next, we prove 
that ))((/)( ngnng Θ∉ . Suppose that 

))((/)( ngnng Θ∈ . Then, we have 
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∈∃∈∃ ++ (23)  

i.e. 
021021 ),(/)()(,, nnngcnngngcthatsuchNnRcc ≥∀⋅≤≤⋅∈∃∈∃ ++ (24) 

 
It follows that 021 ,/1 nncnc ≥∀≤≤ . Since 

0/1 →n  for ∞→n , we have 01 =c . That is 
a contradiction because +∈Rc1 . Consequent-

ly, ))((/)( ngnng Θ∉ . 
Let be ))((),...,,( 21 ngnnnf k Θ∈ . Then we 
have
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so, we have: 
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That means that ))((),...,,( 21 ngOnnnf k ∈ . It 
follows that ))(())(( ngOng ⊆Θ . 
b) The proof follows the same idea with the 
proof for a). 
 
Proposition 4 
a) ))(())(( ngOngo ⊆  
b) ))(())(( ngng Ω⊆ω  

  
Proof 
a) Note that ))(())(()( ngOngOng ⊆∈  and 

))(()( ngong ∉ . It follows that 
Ø))((\))(( ≠ngongO .  

Let be ))((),...,,( 21 ngonnnf k ∈ . It follows 
that 
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Using (27) we have: 
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Recall that )(ng is monotonically increasing 
on +N , so we have  
 

)),...,,(max()),...,,(min( 2121 kk nnngnnng ≤  
(29) 
Consequently, 
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It follows that ))((),...,,( 21 ngOnnnf k ∈ . So, 
we have ))(())(( ngOngo ⊆ . 
b) The proof follows the same idea with the 
proof for a). 
 
Proposition 5 
a) Ø))(())(( =Θ∩ ngngo  
b) Ø))(())(( =∩Θ ngng ω  

c) ))(())(())(( ngngngO Θ=Ω∩  
 
Proof 
a) Suppose that there exists a multivariable 
complexity function ),...,,( 21 knnnf , such that

))(())((),...,,( 21 ngngonnnf k Θ∩∈ . It fol-
lows that  
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and 
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From (31) it follows that for 1cc =  we have 
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Consider k

k Nnnn )(),...,,( 00
2

0
1 +∈  such that  
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Using (32) and (33) we have: 
 

),...,,(),...,,(),,...,,()),...,,(min( 00
2

0
12121211 kkkk nnnnnnnnnfnnngc ≥∀≤⋅  (35) 

 
and  
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),...,,(),...,,()),,...,,(min(),...,,( 00
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0
12121121 kkkk nnnnnnnnngcnnnf ≥∀⋅<  (36) 

 
So, we have obtained a contradiction. Conse-
quently, we have Ø))(())(( =Θ∩ ngngo . 
b) The proof follows the same idea with the 
proof for a). 
c) From Proposition 3, we have 

))(())(( ngOng ⊆Θ  and ))(())(( ngng Ω⊆Θ . 
It follows that  

))(())(())(( ngngOng Ω∩⊆Θ (37) 

Next, we prove that 
))(())(())(( ngngngO Θ⊆Ω∩ . Let be 

),...,,( 21 knnnf  a multivariable complexity 
function such that

))(())((),...,,( 21 ngngOnnnf k Ω∩∈ . It fol-
lows that  
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and  
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Using the same idea that we used in (34), 
consider k
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. Recall that the function )(ng  is monotoni-

cally increasing on +N , so we have 
)),...,,(max()),...,,(min( 2121 kk nnngnnng ≤ .  

Next, using (38) and (39), we have
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It follows that ))((),...,,( 21 ngnnnf k Θ∈ . 
Consequently, 

))(())(())(( ngngngO Θ⊆Ω∩ . 
Next, using (37), we have 

))(())(())(( ngngngO Θ=Ω∩ . 
Proposition 6 
The complexity classes ))(( ngo , ))(( ngoΘ , 
and ))(( ngΘ  form a partition of the com-
plexity class ))(( ngO . 
Proof 
From Proposition 5 we have 

Ø))(())(( =Θ∩ ngngo . From (15) we have 

)))(())(((\))(())(( ngngongOngo Θ∪=Θ . 
Consequently, Ø))(())(( =Θ∩ ngongo  and 

Ø)))(())(( =Θ∩Θ ngngo . It follows that the 
complexity classes ))(( ngo , ))(( ngoΘ , and 

))(( ngΘ are pairwise disjoint.  
From Proposition 3 we have 

))(())(( ngOng ⊆Θ ; from Proposition 4 we 
have ))(())(( ngOngo ⊆ . It follows that 

))(()))(())((( ngOngngo ⊆Θ∪ . Next, us-
ing (15), we have 

))(())(())(())(( ngngongongO Θ∪Θ∪= . 
Proposition 7 
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The  complexity  classes  ))(( ngΘ ,  
))(( ngωΘ ,  and  ))(( ngω   form  a  partition  

of  the  complexity  class  ))(( ngΩ . 
Proof 
The proof follows the same idea with the 
proof for Proposition 6. 
Remark 2 
Using Proposition 6, Proposition 7, and De-
finition 3, we have: 
 

))(())(())(( ngngOngC Ω∪= (41) 
 
4. The main results 
Theorem 1 
The complexity classes ))(( ngo , ))(( ngoΘ , 

))(( ngΘ , ))(( ngωΘ , and ))(( ngω  form a 
partition of the set ))(( ngC .  
Proof 

From Proposition 6, we have that ))(( ngo , 
))(( ngoΘ , and ))(( ngΘ  are pairwise dis-

joint. From Proposition 7, we have that 
))(( ngΘ , ))(( ngωΘ  and ))(( ngω  are 

pairwise disjoint. From Proposition 5, we 
have that ))(())(())(( ngngngO Θ=Ω∩ . 
Consequently, we have 

Ø))(())(( =Θ∩ ngngo ω , 
Ø))(())(( =∩ ngngo ω , 

Ø))(())(( =Θ∩Θ ngngo ω , and 
Ø))(())(( =∩Θ ngngo ω . It follows that 

))(( ngo , ))(( ngoΘ , ))(( ngΘ , ))(( ngωΘ , 
and ))(( ngω  are pair wise disjoint. 
 
From Proposition 6, Proposition 7, and (14) 
we have 

))(())(())(())(())(())(( ngngngngongongC ωω ∪Θ∪Θ∪Θ∪= (42) 
 
It follows that ))(( ngo , ))(( ngoΘ , ))(( ngΘ

, ))(( ngωΘ , and ))(( ngω  form a partition 
of the set ))(( ngC . 

Theorem 2 
Let be ++ → RNf k)(:  a complexity function 
with the following property: 
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Proof 
Consider the function ),...,,( 21 knnnf  with the properties from the hypothesis. It follows that  
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This means that ))((),...,,( 21 ngnnnf k Θ∈ . 
Using this result and Proposition 3, we have 

))((),...,,( 21 ngOnnnf k ∈  and 
))((),...,,( 21 ngnnnf k Ω∈ .   

Theorem 3 
a) Let ++ → RNf k)(:  be a complexity func-
tion with the following property:  
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Then we have 
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In addition, we have 
))((),...,,( 21 ngOnnnf k ∈ . 

b) Let ++ → RNf k)(:  be a complexity func-
tion with the following property:  
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/),...,,()(

)),((),...,,(

nnnnfngwhere
ngnnnf k

=

∈ω
(50) 

In addition, we have 
))((),...,,( 21 ngnnnf k Ω∈ . 

 
Proof 
a) Consider the function ),...,,( 21 knnnf  with 
the properties from the hypothesis. It follows 
that 

),...,,min(
,)(),...,,(),,...,,(),...,,(

21

2121

k

k
kk

nnnmwhere
Nnnnmmmfmnnnf

=
∈∀⋅≤ +  (51) 

 
Consider the following inequality: 
 

),...,,min(),,...,,()(),...,,( 2121 kk nnnmwheremmmfmmcnnnf =⋅⋅⋅≤ (52) 
 
In order for this inequality to be true for all 

+∈ Rc , we search for each +∈ Rc  a value 
for +∈Nmm, . The condition that must be 

true is 1)( ≥⋅mc . So, we take cm /1≥ . 
Consequently, 

 
     

),...,,min(
),,...,,(),...,,()),,...,,(),...,,(
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0
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It follows that 
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From this expression, we have 

))((),...,,( 21 ngonnnf k ∈ , and using Propo-
sition 4, we have ))((),...,,( 21 ngOnnnf k ∈ . 

b) The proof follows the same idea with the 
proof for a). 
 
 



Informatica Economică vol. 13, no. 4/2009  125 

 

Theorem 4 
a) Let be ))((),...,,( 211 ngonnnf k ∈  and 

))((),...,,( 212 ngnnnf k Ω∈ . Then 
),...,,( 211 knnnf  and ),...,,( 212 knnnf  are 

comparable. 
b) Let be ))((),...,,( 211 ngnnnf k ω∈  and 

))((),...,,( 212 ngOnnnf k ∈ . Then 
),...,,( 211 knnnf  and ),...,,( 212 knnnf  are 

comparable. 
 
Proof 
a) From ))((),...,,( 211 ngonnnf k ∈  and 

))((),...,,( 212 ngnnnf k Ω∈  we have 
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From (55) we have  
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Consider )),max(),...,,max(),,(max(),...,,( 020102
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1 kkk nnnnnnnnn = . It follows that  
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and  
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It follows that  
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(61) 

 
Consequently, ),...,,( 211 knnnf  and 

),...,,( 212 knnnf  are comparable. 
b) From ))((),...,,( 211 ngnnnf k ω∈  and 

))((),...,,( 212 ngOnnnf k ∈  we have 
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and 
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From (62) we have 
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(64) 
Consider 
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It follows that 
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0
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and 
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Let be +∈ Rc  such that 12 ccc ⋅= . Consequently, we have 
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It follows that 
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thatsuchNnnnRc
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(68) 

 
Consequently, ),...,,( 211 knnnf  and 

),...,,( 212 knnnf  are comparable. 
 
Theorem 5 
Let be ))((),...,,( 211 ngonnnf k ∈  and 

))((),...,,( 212 ngnnnf k ω∈ . Then 
),...,,( 211 knnnf  and ),...,,( 212 knnnf  are 

comparable. 
 
Proof 
From Proposition 4, we have 

))(())(( ngng Ω⊆ω . From the hypothesis we 
have ))((),...,,( 211 ngonnnf k ∈  and 

))((),...,,( 212 ngnnnf k ω∈ . It follows that 
))((),...,,( 211 ngonnnf k ∈  and 
))((),...,,( 212 ngnnnf k Ω∈ . Next, using 

Theorem 4, we have that ),...,,( 211 knnnf  and 

),...,,( 212 knnnf  are comparable. 

 
Theorem 6 
a) Let be ))((),...,,( 211 ngonnnf k ∈  and 

))((),...,,( 212 ngnnnf k Θ∈ . Then 
),...,,( 211 knnnf  and ),...,,( 212 knnnf  are 

comparable. 
b) Let be ))((),...,,( 211 ngonnnf k ∈  and 

))((),...,,( 212 ngnnnf k ωΘ∈ . Then 
),...,,( 211 knnnf  and ),...,,( 212 knnnf  are 

comparable. 
 
Proof 
a) From Proposition 3, we have 

))(())(( ngng Ω⊆Θ . From the hypothesis we 
have ))((),...,,( 211 ngonnnf k ∈  and 

))((),...,,( 212 ngnnnf k Θ∈ . It follows that 
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))((),...,,( 211 ngonnnf k ∈  and 
))((),...,,( 212 ngnnnf k Ω∈ . Next, using 

Theorem 4, we have that ),...,,( 211 knnnf  and 
),...,,( 212 knnnf  are comparable. 

b) From (16), we have ))(())(( ngng Ω⊆Θω . 
From the hypothesis we have 

))((),...,,( 211 ngonnnf k ∈  and 

))((),...,,( 212 ngnnnf k ωΘ∈ . It follows that 
))((),...,,( 211 ngonnnf k ∈  and 
))((),...,,( 212 ngnnnf k Ω∈ . Next, using 

Theorem 4, we have that ),...,,( 211 knnnf  and 
),...,,( 212 knnnf  are comparable. 

 
Theorem 7 
a) Let be ))((),...,,( 211 ngnnnf k ω∈  and 

))((),...,,( 212 ngnnnf k Θ∈ . Then 
),...,,( 211 knnnf  and ),...,,( 212 knnnf  are 

comparable. 
b) Let be ))((),...,,( 211 ngnnnf k ω∈  and 

))((),...,,( 212 ngonnnf k Θ∈  Then 
),...,,( 211 knnnf  and ),...,,( 212 knnnf  are 

comparable. 
 
Proof 
The proof follows the same idea with the 
proof for Theorem 6. 
 
5 Conclusion 
In [6] we defined five one-variable complexi-
ty classes for multivariable complexity func-
tions. In this paper we continue that work, 
defining new one-variable complexity classes 
and proving new properties. The most impor-
tant results are several criteria for two multi-
variable functions to be comparable. The re-
sults presented in this paper are important 
because they reduce the work with multivari-
able complexity functions to the work with 
one-variable complexity classes and one-

variable complexity functions. 
As a future work, we want to obtain more 
powerful results related to the link between 
one-variable complexity classes and multiva-
riable complexity functions. Another future 
work can be to study the behavior of multiva-
riable complexity functions for various types 
of algorithms, in order to find new characte-
rizations for these functions.   
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